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Summary

This report deals with the theory, formulation, and solution of compressible three-
dimensional boundary-layer equations with applications to general swept subsonic or
supersonic wings in laminar flow. A number of modifications and new features are
incorporated, based on an earlier general procedure described in NASA CR 4269, Jan.
1990. A more efficient algorithm has been employed, and overall improvements have
been made that result in a user-friendly computer code. An interface routine is presented
that uses the inviscid Euler solutions as input. Code modifications are implemented for
application in laminar flow control design applications. Output of solution profiles and
quantities required in boundary-layer stability analysis is included. Conversion routines
to compare results with Navier-Stokes profiles are also presented.

This report is a stand-alone document that provides all the necessary details for
numerical calculation of three-dimensional swept-wing boundary layers. Examples of
applications and validation with thin-layer Navier-Stokes solutions are presented. A

user's manual is included as an appendix.

Keywords

Boundary layer
Compressible flow
Laminar flow control
Transition prediction

Swept-wing flow

iii

PRECEDING PAGE BLANK NOT FILMED






Summary
Nomenclature
1.

2.

Table of Contents

INTRODUCTION

FORMULATION

2.1 Three-Dimensional Boundary-Layer Coordinates

22 Three-Dimensional Boundary-Layer Equations

2.3 Transformation

2.4 Transformed Equations

2.5 Quasi-Two-Dimensional Equations for Initial
Conditions

2.6 Equations in Vector Form

DISCRETIZATION

3.1 Differencing Formulas

3.2 Linearized System at (i)

3.3 Boundary Conditions

3.4 Discretization in the (i,j) directions

INVISCID INTERFACE

4.1 Attachment-Line Relocation

4.2 Edge Values by Interpolation

4.3 Edge Values From BL-EDGE Equations

BL3D EXAMPLE CASES

5.1 Geometry and Conditions for Case 1

5.2 Euler Solution for Case 1

5.3 Euler - BL3D Interface for Case 1

5.4 BL3D Solution for Case 1

5.5 BL3D Results for Case 1

5.6 Results With Suction for Case 1

5.7 Geometry and Conditions for Case 2

v

PRECEDING PAGE EBLANK NOT FILMEL

Page

D -



5.8 Euler Solution and BL3D Interface for Case 2 43

59 BL3D Solution for Case 2 43
REFERENCES 45
FIGURES 46
APPENDIX A

A-1
Coefficients of the Linearized System of Compressible Three-Dimensional to

Boundary-Layer Equations Discretized With a Fourth-Order Pade Formula A-7

APPENDIX B
B-1
User's Manual for the BL3D Program to
B-26

vi



Ay Ay, Az, Ay
ap, az, as

k
al,m

Bi, 1=1,6

B, i=36
By, By
bl, bz; 635
b4’ b5

bfm

Ci, 1=1,6
Ci, i =3,6
043 é5

G
Ci3, Ca4, Cps,

812

hl: h2
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coefficients in the transformed continuity equation (see eqs. (47)—(50))
coefficients in the ¢-direction differencing formula (see egs.
(129)—(130))

diagonal elements of the linear system given by eq. (101) or (108)
coefficients in the transformed ¢ momentum equation (see egs.
(55)—(60))

coefficients (see eq. (91))

coefficients (see eq. (94))

coefficients in the n-direction differencing formula

(see eqgs. (131)-(133))
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coefficients in the transformed » momentum equation (see egs.
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pressure coefficient

metric coefficients (see eqs. (6)—(12))

skin-friction coefficient in x direction normalized with free-stream values
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coefficients (see eq. (96))

incremental arc lengths, nondimensional, in the x and y directions (see
egs. (4)—(5))
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u/u,

an arbitrary function
ou

a5t

v/ v,
metric coefficient (see eq. (3))
total enthalpy, nondimensional (see eq. (24))
free-stream total enthalpy, dimensional (see eq. (23))
metric coefficient (see eqs. (1)—(2))
metric term (see eq. (8))
A
indices in the ¢, n, and ¢ directions
index k that corresponds to the boundary-layer edge
factor for stretching the grid in the ¢ direction (see eq. (128))
F -
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nxlim, nylim
P

Pr
P,
Q

q

4qs

Qoo

R*
Recr
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reference length, dimensional

(p/pette)

l/Pr

G

free-stream Mach number

maximum number of boundary-layer grid points in x and y directions
limits set on nx, ny to restrict computation to a smaller region
static pressure, nondimensional

laminar Prandtl number

free-stream pressure, dimensional

vector (see eq. (85))

absolute velocity, nondimensional (see eq. (25))

normalized suction rate defined as ¢; = (pju7])/(pi.Us)

wall heat flux, dimensional

gas constant

crossflow Reynolds number (see eq. (138))

free-stream Reynolds number, based on reference length L (see eq.
(29))

momentum-thickness Reynolds number (see eq. (139))

residual, right-hand side of equation (108)

solution vector at location (i, j)

nondimensional arc lengths in the x and y directions (see egs. (4)—(5))
temperature, nondimensional

free-stream temperature, dimensional

free-stream velocity, dimensional

velocities in streamwise and spanwise directions, nondimensional
velocities, nondimensional, in Cartesian coordinate directions
boundary-layer velocities along and orthogonal to the edge streamline
reference velocity for v

transformed normal velocity (see eqs. (44)—(45))

scaled normal velocity (see eq. (28))

surface-normal velocity, nondimensional

boundary-layer coordinates in streamwise, spanwise, and normal
directions, nondimensional

Cartesian coordinates, nondimensional

stretched boundary-layer normal coordinate (see eq. (27))
elements of block tridiagonal system (see eqs. (122)—(124))
angle between x- and y-coordinate lines

ratio of specific heats

step size in ( (see eq. (110))

transformed normal coordinate (see eq. (36))
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Superscripts:

prefix used to indicate change in a solution vector or solution vector
element at iteration level n and at location (i, j) (see eq. (105), for
example)

boundary-layer thickness, dimensional, at which v; reduces to 10
percent of its maximum value

transformed boundary-layer surface coordinates

(pe/p)

sweep angle

coefficients (see eq. (97))

absolute viscosity, nondimensional

kinematic viscosity, nondimensional

density, nondimensional

coefficients (see eq. (87))

surface partial derivative functions (see egs. (14)—(17))

coefficient in normal velocity transformation (see eq. (115))
coefficient in wall heat flux transformation (see eq. (118))
relaxation parameter

relaxation parameter for attachment-line iteration

factor used in finite differencing in ¢ direction

boundary-layer edge

at the wall
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maximum

reference value

wall quantity

partial derivatives in x, y, and z directions
partial derivatives in £, n, and ¢ directions
free-stream quantity

x and y directions

dimensional quantity

Cartesian coordinate (as in X, y/, ')
partial derivative in ¢ (except for ¥, ¥/, ')
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1. INTRODUCTION

A renewed interest has developed in the design of wings with extensive lengths of
laminar flow in the subsonic and supersonic regimes. Design for laminar flow by passive
or active means is a muitiparameter optimization problem that involves such variables as
surface pressure gradients, leading-edge radius, sweep, suction rates, and free-stream
conditions. To aid in the design process, a reliable computational procedure is needed
to predict boundary-fayer stability. An important part of this computational prediction is
the accurate generation of smooth mean-flow profiles. This report addresses the issue

of generating these profiles.

Two options are available for mean-flow prediction. The first one is the use of an
accurate thin-layer Navier-Stokes solver in which particular attention is paid to such
issues as grid resolution and numerical dissipation. However, for repeated preliminary
design calculations, the Navier-Stokes solution is expensive. The second option is
the use of an accurate boundary-layer method coupled with an inviscid Euler solution,
which is particularly attractive for experimentation with different pressure and suction

distributions.

This report deals with the theory, formulation, and solution of compressible three-
dimensional boundary-layer equations, with specific reference to general swept subsonic
or supersonic wings in laminar flow. A number of modifications and new features are
incorporated from an earlier general procedure described in NASA CR 4269, Jan. 1990
(i.e., ref. 1; see also ref. 2). However, the present report is a stand-alone document
that provides all of the necessary details for numerical calculation of three-dimensional

swept-wing boundary layers.
The modifications to the original procedure provide a more efficient algorithm. The
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solution scheme has been modified to solve the continuity, energy, and momentum equa-
tions simultaneously, with iterative update of nonlinear terms. Streamwise and spanwise
differencing schemes have been modified to ensure that the boundary-layer solution
is consistent with the boundary-layer-edge boundary conditions. Overall improvements
have been made that result in a more user-friendly computer code. An interface rou-
tine has been developed to use the Euler solutions as input. Code modifications have
been implemented for application in laminar flow control design. The modified code also
provides the output of profiles and quantities that are required in boundary-layer stability
analysis. Conversion routines that enable one to compare the boundary-layer solution
profiles with Navier-Stokes solution profiles are also provided.

Two applications of the code are presented: a subsonic case and a supersonic
case. For the subsonic case, validations with the thin-layer Navier-Stokes solutions are
presented. Detailed comparisons are made of the solution profiles and other boundary-
layer properties. For the supersonic case, comparisons are given of the present code
with a conical swept wing boundary-layer code developed by Kaups and Cebeci (ref. 3).

A user's manual is included as an appendix to this report. The complete program
package is archived in the NASA Langley computer system mass storage and can be

made available per individual request.



2. FORMULATION
2.1 Three-Dimensional Boundary-Layer Coordinates

We start with the definition of the surface-oriented curvilinear nonorthogonal coordi-

nates used in the three-dimensional boundary-layer equations.

Let us assume that the surface of interest is defined in terms of Cartesian coordinates
(z'* ™, 2'*) in dimensional units (see Figure 1(a)). The free-stream quantities are

(Ms, PL, T%) with a corresponding free-stream velocity UZ,.

The body coordinates are normalized with a reference length L?_; the Cartesian
components of velocity (", "%, w'*) are normalized by the reference velocity UZ,. The
resulting normalized coordinates are (', ¥, 2'), and the normalized velocity components
are (v, v, w'). (See Figure 1(b).) The normalization of other flow quantities is discussed

in the next section.

The boundary-layer coordinates are defined in the two surface directions z and y,
where z is the predominant streamwise direction and y is the general spanwise direction
(not necessarily along the constant percent chord direction for a wing). The coordinate z
is mutually perpendicular to both zand y. The coordinates « and y are surface conforming,
but do not need to be measured as surface arc lengths. For example, for the case
of the attachment-line flow on a swept wing, the boundary-layer coordinate y may be
defined along the attachment line on the surface, but can be expressed as distance
in the spanwise direction perpendicular to the chord. The coordinates z and y can
also be normalized to the (0, 1) range in the computational domain. The three basic
metric quantities (h1, k2, g12) defined later in this section characterize the stretching and

shearing of the physical grid into the computational grid.

The grid line « = 0 coincides with the starting location of the boundary layer as
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shown in Figure 1(c) (in this case, the attachment line of a swept wing). The choice of
z = 0 is important because the system of equations becomes singular at the boundary-
layer origination point, and a special set of equations must be solved here to initialize

the solution.

The transformation of quantities from the (', 4/, ') to the (z, y, z) system is deter-
mined by the set of six partial derivatives (2%, ¥, 20, Tys Yy z;). Note that in boundary-
layer theory, the planes where z = constant are assumed to be parallel to the surface,
which means that the surface partial derivatives are sufficient to characterize the trans-
formation from one system to another. These partial derivatives enter into the three-

dimensional boundary-layer equations via the three metric quantities (hy, ha, g12) de-

fined as
b= L+ )+ (L) W
2 2 2
B = (@) + () + () @
g1z = hihycos B = ziz, + YVelYy + 222y 3

The metric coefficients h; and h; represent the stretching in the two surface coordinate
directions with reference to the physical grid. The nondimensional surface arc lengths

in the two directions s; and s, are defined by the two incremental relations

dsy = hy dzx (4)

dsy = hydy (5)



Further, the quantity gi2/h1h, is the cosine of the angle 8 between the two coordinates

r and y. The additional coefficients, based on ky, Ay and g;2, are defined as

013 = \/}L%h% - g122 (6)

912 | 912 1
Co = = {'—"‘hlx + hyy — —9121:} (7)
Cis L b o
C L (hohty — 2ai2kae) : hy = hohd1 1 912 (8)
g = =5 1ls - 202z 5 Ng = y
25 0123 ly 912 2 1742 h%hg
h gi12
e = —b — hohoy — P2 py
Cas cz, {glzy haha " -y} (9)
Oy = 22 hyl gz, 10
34 = C_fe. g12¢ — M N1y — h_l (3¢ ( )
1
Cy5 = Ez—{hsh-zx ~ 2g12h1y} (11)
13
7 g12 | 912 I
O3 = L2920 4 by — — g
36 7. {h% 2y + h2 P ngy} (12)

The transformation of velocities from («/, ', w') to (u, v, &) is accomplished by
the inversion of the system given below. Note that @ is the symbol used for the

nondimensional surface-normal velocity; the symbol w is reserved for later use as
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transformed normal velocity.

EK: %" [ ] [ u' ]
v, vp B |v| = | (13)
where
Y1 = Yoz — 2y, (14)
Yy = a:;/z; - Z;I; (15)
3 = TLy, — TLY, (16)
b = o2+ i+ vl (17)

The metric terms defined above allow the flow to be described in terms of surface-oriented
quantities. As a result, the flow can be treated as equivalent to that on a developed flat
surface described by two families of nonorthogonal coordinates. However, the metric
terms do not represent the effects of surface curvature on the physics of the flow. Note
that the effect of surface shape on the boundary layer is felt only through the inviscid

pressure distribution.
2.2 Three-Dimensional Boundary-Layer Equations
The three-dimensional laminar, compressible boundary-layer equations in surface-

oriented curvilinear nonorthogonal coordinates are given below (subscripts indicate par-

tial derivatives).

The continuity equation is



C C
(Sem) +(F2m) +Cnpo) =0 (19)
), T\ R 7Y,

The momentum equation in the z direction is

(h ugr + h uy + Wuz + Cagu® + Cosuv + Czsv> — (pus);
1 2

hih3 hig:: 1
— ( 1 P:c + 19212 Py) 5
C Cis yME,

The momentum equation in the y direction is

(19)

u
p (hlvz + '};Uy + woy + Caau® + Cysuv + Csevz) — (pvz);

hag12 h2hy > 1
= | =—=PF — P
( C ! ’123 ) AMg,

(20)

The energy equation is written in terms of the nondimensional total enthalpy H. When

perfect gas and constant specific heats are assumed, the dimensional total enthalpy H

is defined as
R* 1
H* = ——J—T* + _q*?, (21)
v —1 2
where
q*2 - ul*Z + vl*2 4 w/*z ~~ u*2 + U*Z 4+ 2u* U* COSﬂ (22)

The nondimensional total enthalpy H = H*/H}, is based on the reference value
* * 1 *2
HY, = ——T §Uoo (23)

which results in the definition

T + 05(y —1) ML ¢?
1+ 05(y—1)M%

H = (24)



with T = T*/T% and
¢ = ut + 02+ 2uvcos P (25)

The resulting energy equation is

1 X
p(uH, + vH, + 3 H:) = |1+ E(1-—) (¢, (26)
Pr 2 Pr B

In the equations above, z and « are stretched quantities with a free-stream Reynolds

number scaling applied as

z = 2/ Ress (27)
W = Wy Reg (28)

where
Reo = ULLL [ vi (29)

Other variables are normalized as p* by p%; T* by T%; P* by P%; and pu* by u*.. The

equation of state is then written as
P =pT (30)

The pressure coefficient can be written as

2(P —1)

Cp = v MZ

(31)

The variation of viscosity with temperature is modeled by the Sutherland law as

. N: T*I.S
b = T
T + 17
T; = 198.6°R = 110.33 K (32)
Ib - sec ¢ N —sec

pr = 227 x 1078 1.458 x 10~

ftZoR1/2 m? K1/2



In nondimensional form, the Sutherland law is expressed as

1.5 * T*
= ‘ —'(1 _+ T'T_) y Br = ﬂ: ; T = ::
T+ T Hoo T (33)

With the assumption that pressure is constant in the normal direction and that the normal
derivatives tend to zero at the boundary-layer edge (which is denoted by the subscript
¢), the right-hand sides (RHS) of equations (15) and (16) can be replaced by the edge

quantities to yield

P (h%uI + —U—uy + Buz + Cogu® + Cosuv + 026’02> — (puz);

ha
(34)
Ue Ve 9 9
= Pe (Euex + Eue,y + Cau; + Casueve + Cog ve)
u v . 2 2
P va + h—zvy+wvs+034u + Cysuv + Cyev” ) — (pvs);
(35)

U v
= Pe (_e Ve,r + h_Z'Ue,y + Ciq4 uz + C3s5 ueve + Cis 1’3)

The equations are hyperbolic in the stream-surface directions and parabolic in the
surface-normal direction. The boundary conditions (., v., H.) are specified at the
boundary-layer edge. The value of @&, and one of the values, Ty, Hw, OF H,, are
specified at the surface. The solution profiles at z = 0 and y = 0 are required to initiate

the solution marching procedure.

2.3 Transformation

A transformation is required for the 2 and & variables to handle the singularity of the
equations at = = 0. The transformation also reduces the boundary-layer growth in the
computational coordinates. Further, a transformation for @ is necessary to express the

resulting equations in a closed form.



The transformation is defined as

Ue .
¢ =/ [ oe (36)
Pe He S1 5

z

ézw;n=y;81=/h1dr (37)
0
Although ¢ = z, the partial derivative 2 is actually 4= |, :, and the partial derivative

is 2 |,¢. A similar distinction exists between # and 4. The transformations of the

gradients of an arbitrary function f between the (z, y, ) and (¢, », () systems are given

by o ] T
fe 1 0 z| | fs
Bl = [0 1 2| | fy (38)
| f¢ 10 0 Z ] [/f:]
[ fz ] (1 0 ¢ [fe]
fy| = |0 1 G| [ fy (39)
| f5 ] 100 ¢ L/l

Because the (3 x 3) matrices are inverses of each other, the following relations are

valid:
o 1 Ue
—a; e - f Pe He S1 (40)
¢

¢ _ . Ue
% Zep PR (41)
o¢ . U
— = —z 42
0y . n P e fle 51 ( )

We also define the new variables F and G and a transformed normal velocity variable

w such that

F = ufue; G = vfor (43)



81 OC s1 ., IC s1 vy OC
y—— 4+ —F =24+ —G— = 44
uu€85+th8m+h~gcueay (44)

w =

where v, is an arbitrary reference velocity for v. The transformed velocity w simplifies
the continuity equation by the explicit removal of the density term. The transformation

for w can also be rewritten as

Si . u . v .
= p,/ W — —Z — —=Z 45
v P Pe [e Ue (w hy ha 7’) (49)

2.4 Transformed Equations

The application of the transformations for = and @ to equations (18), (34), (35), and
(26) is straightforward and is described in detail in reference 1. (Note that in the present
report the notations for coefficients have been simplified.) The results are summarized

here. The continuity equation reduces to

we = Al Ff + AZF + Ai} Gn + A4G (46)
A = — 47
L . (47)

s ¢
Ay = — —— < Cr3 — 48
= -} 48)
A3 = - }Sl U (49)

19 Ue

S1 ¢ vy
Ay = ——— () 0
! Cis @ { 35, uf}'y (50)
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¢ = /pe e 51 u¢ (51)

Also note that at the boundary-layer edge the transformed normal velocity becomes
We ¢ = AZ + A3 Ge,n + A4 Ge (52)

At the boundary-layer edge, the partial derivatives of F, G, ¢ and the metric coefficients
in the z or y direction are the same as the corresponding partial derivatives in the ¢ or
n direction.

To set up the fourth-order Pade differencing, we introduce three new variables L, M,
and /, defined as the partial derivatives with respect to ¢ of the basic variables F, G, and

H, respectively. The £ momentum equation reduces to
(L ~wF) = Bi(F?), + B:(FG), + BsF* + By FG + BsG* + Bs9  (53)

The new variables introduced are defined as

L:FC;M=G<;1:H<;9:(ﬁ’i);lz(”") (54)

The coefficients B, are given as

B = — A (55)

By = — A3 (56)

By = hf—lueuf’e — Az + (g5 (57)
By = 2 e, — Ag + Coz 1 (58)

o u? Ue

12



The coefficient B; is evaluated at the boundary-layer edge from equation (53) as

Bs = —{wer + B2Gey + Bz + BiGe + Bs Gg}

where w, . is given by equation (52).

The n momentum réduces to

(M -wG), = Ci(FG) + C2(G*), + C3F* + C4F G + CsG* + Cg 0

The coefficients C; are given as

Cp = -4
Cy = — A3
Oy = C34 51 Ue

Ur

S1
Cy = —Ay + 51C35 + Ur g
hi vy
81 Ur 51
Cs = —Ag + Csp + Ur.g
Ue ha u.

(59)

(60)

(63)

(65)

(66)

The coefficient Cs is evaluated at the boundary-layer edge from equation (61) as

Ce = — {‘we,c Ge+ Ci1Gee + Co (GE’),, + C3 + C4Ge + Cs Gf:}

13
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The energy equation in terms of the transformed variables becomes

{
(EI —wH) = Di(FH)e + D,(GH),, + D3 FH + DyGH + Ds
¢

(68)
=B ()0,
The coefficients D, are given as
D1 = —Al; D2 = —A3; D3 = —Azg D4 = —A4 (69)

The term D5 can be rewritten with equation (25) as

*2 (1 — Pr A
_ o0 - 21 2 ) g12
Dy = e ( o ) {1 {ueFL + viGM + uevy (_lzllzg)(FM+ GL)] }c (70)

2.5 Quasi-Two-Dimensional Equations for Initial Conditions

The solution of the transtormed three-dimensional boundary-layer equations requires
the specification of profiles of F, G, and H at the £ = 0 and n = 0 planes as initial
conditions. In the ideal case, a plane of symmetry flow or a conical flow will exist at
these planes. As a result, the equations simplify to quasi-two-dimensional form (i.e.,
either ¢ or n derivatives reduce to zero). This simplification permits the solution and
generation of initial solution planes independent of the full three-dimensional flow region.

In the case of flow past a wing attached to a fuselage, certain assumptions are
necessary for simplification of the initial profiles. For a swept wing with a nonsymmetrical
chordwise wing section at an angle of attack, the attachment-line boundary layer (at ¢

= 0) is a true symmetry plane only if we assume that the coefficient (5 = 0. This

14



assumption is reasonable if the curvature of the attachment line is not significant. A
more drastic assumption is necessary for the = 0 plane. We restrict the calculation
to a certain region on the wing, where the boundary-layer assumptions are valid. At
the n = 0 boundary, we assume that the , gradients of the flow variables are equal to
zero. However, we permit variation of the metric terms as well as the boundary-layer
edge quantities in both the ¢ and 7 directions. With this assumption, the equations
again reduce to quasi-two-dimensional form. This assumption is a more general version
of the conical flow assumption and is termed as the locally infinite, swept-wing (LISW)
assumption. The profiles at the ¢ =0, = 0 location are generated by assuming that

the attachment line is infinite swept locally as well.

The equations that are valid for an LISW flow are obtained by setting the coefficients
As (hence, By, C,, and D») to zero. In the finite-differencing scheme, the n-direction dif-
ferencing coefficients are also set to zero. To obtain smooth solutions near this boundary,
the full three-dimensional solution is relaxed to the LISW solution by incorporating a fac-
tor w = w(n) to be applied to these coefficients for a few planes adjacent to the n =0
plane. A value of w = 0 gives the LISW solution, whereas a value of w =1 gives the
full three-dimensional solution. A similar assumption of LISW flow is used at the 5 =

nmax Doundary as well.

The quasi-two-dimensional equations that are valid for an attachment line are more
involved because the ¢ momentum equation becomes singular at ¢ = 0 by substituting
u = 0. The gradient du/d¢ is finite, however. The effect of the strong inviscid flow
acceleration f. = du./d¢ on the attachment-line boundary layer is characterized by taking

the ¢ derivative of the ¢ momentum equation. The new definitions for the transformed

15



normal coordinate and normal velocity are

¢ = /pdz (71)
Pe ite h1 4

h] (~ v ,,)
w = w— —z 72
p Pe,uefe h‘l " ( )

With these special transformations, the transformed equations are in the same form as

before (equations (46), (53), (61), and (68)) except that the following coefficients are

changed:
A =0 (73)
Ay = — 1 (74)
b= R ™
Ay = — % {CIS fj:u_f:}y (76)

¢ = \/pepte b1 fe (77)

By =2 (78)
_ h] Uy hl Uy
B4 hg fez fen A4 + 025 fe (79)
hi 2
Bs = Czs,xl—;r (80)

16



Cy =0 (81)

Cy = —Az (82)
hy v, h

Cs = — As + Cie }: + hzlfe Urg (83)
U2 (1=Pr\ 5,

Ds = H;o< o~ >v, (1GM), (84)

In the finite-differencing scheme for the attachment-line solution, the ¢-direction

differencing coefficients are also set to zero.

As before for the case of the LISW equations, the equations that characterize the
flow at ¢ = 0, n = 0 are obtained from the attachment-line equations with the added
condition A3 = 0.

2.6 Equations in Vector Form

To apply the fourth-order Pade differencing formula to the set of equations, the
equation set is expressed in vectorial form for convenience. The vector @ is defined
as

T
0 = (w, IL —wF, IM — w@, LI —wH, F, G, H) (85)

where

[
The normal derivative Q' = 9Q/8¢ (note that the prime denotes the partial derivative with
respect to ¢) can be written from the boundary-layer equations. Before the expression

for Q' is presented, the following equations are given.
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The density ratio  can be written from equation (24) in terms of the elements of Qas

0 = F1F? + E, FG + E3G? + E H

E, = —-Qu'g); E, = —2£u611r cos 3
X3 X3
(87)
E3=—X203;E —&
X3 X3

-1
x1 =1+ 1—2—M§o; x2 = x1 — L5 x3 = Hexa — quz

The viscosity ratio [ can be written from equation (33) as

[ \/5(1 +TT/T6)

6+ 1,/T. (88)
The normal derivatives I’ and ¢' can be derived in the form
0 = 2B, FL + E2(FM +GL) +2E3GM + Eql (89)
Lo 1 {
r= { _ } 90
vo l2ve  (1+T/Te) (90)

The @' element is obtained from equation (46). The @’ element is obtained by

substituting for 6 from equation (87) into equation (53).

Qy = Bi(F*), + B2(FG), + By F* + ByFG + BsG* + Be H

(91)
By = By + E1Bs; By = By + E2Bg; Bs = Bs + E3Bg; Bs = BoEy
The element @3’ is similarly obtained as
Q3 = C1(FG), + C2(G*), + C3F* + C4FG + C5G* + Co H
(92)

C3 = C3 + E1Cs; Cy = Cy + E2Cs; Cs = Cs + E3Cy; Cg = CoEy
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The second derivatives L' = F", M' = G", and I' = H" required subsequently in
the vector representation are obtained by differentiation. For example, differentiation of

QQ, yleldS
Q, = IL' + L' — wL — Fuw' = RHS of equation (91) (93)

If « is substituted from equation (46) and rearranged, then

I = -%—[Bl (Fz)E + B’_)(FG)W + BgFZ + B4FG + B5G2 + BGH
LI+ wl + AFF + AsFG); (94)

Bg = B3+A2; B4 = B4+A4

The expressions for M and 7 are similarly obtained as
1 ‘ 2 ~ 2 A 2 =
M= 2 [CiFG), + C2(6F), + CoF? + CiFG + G5 G 1 Coll
MU+ wM + AGFe + AGGyl; (95)

Gy = Ca+ Ag; Cs = Cs + Aq

¢ = L{p,(Fi), + D:(GH), + Dy FH + DsGH + Ds
L § n
I+ wl + AHF + AsHG; (96)

Dy = D3+ Ay; Dy = D+ Ay

The expression for Ds can be obtained from equation (70) as
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Ds = 1 [\ (FL'+ L%) 4 X (GM' + M2) + 3 (FM' + ML +GI +LM))|

+ U NMFL + 0GM + (FM +GL)]; (97)

U;g 1 - Pr

o= L
"7 Hr TPy

AL = Ag ug; A2 = A UTQ; A3 = Aouevy cos 3

Note that A; = A3 = 0 for the attachment-line equations. The final vector repre-

sentation is given as

( w

(L —wF
IM — wG
Q = | LI—wH (98)
r
G

\ " )

/ ‘ ‘41FE+‘42E+‘43GZ]+A4G~ } \
B, (F?‘)E + BQ(FG),’ + B3F2 + By FG + BsGQ + BgH
Cl(FG)£ + Cz( ;2)17 + éng + é4FG + O{,Gg + CsH
Q" = D\(FH)¢+ Dy(GH), + DyFH + D4GH + D (99)
L

\ )

( A]Lf + A3~L + A3ﬁ[y + A4 M . : \
QBl(FL)f + Bz(Fﬂ/f + GL)n +2B3F L + B4(Fﬂrf + GL) +2BsGM + Bgl
Ci(FM + GL)¢ +2C2(GM), + 203 FL + Cy(FM + GL) 4 205GM + Col
Q"= Di(FI+HL) + Dy(GI + HM), + D3(FI+ HL) + Dy(GI + HAM) + Dj
L' (equation (94))

M' (equation (95))
\ I' (equation (96)) )

(100)
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3. DISCRETIZATION
3.1 Differencing Formulas

We apply the fourth-order Pade differencing formula in the normal direction. This two-
point compact scheme is defined in terms of the variable and its two higher derivatives.
In the present case, if we assume that the indices in the two surface directions (, )
remain constant and that k is the normal direction index, then the discretization at the
midpoint of £ and (k — 1) is written as

Al Ac? y
O~ Qo — 5 Qi+ Qo) + T3 (@F-QLy) + 0(a¢®) =0 (101)
AC = G — Ce-1 (102)

The differencing in the surface directions ¢ and n are second order (or first order in

some regions). For example, in the ¢ direction, if we assume that the indices (j, k) are

fixed, then
Qe = a1Qi + {aQ}
(103)
{aQ} = @2Qi-1 + a3Qi-2
Similarly, in the 5 direction, if we assume that the indices k are fixed, then
Qy =b01Qi; + {0Q}
(104)

{6Q} =b2 Qij—1+b3Qij—2+ by Qi1 + 05Qi-1j+1
The value of the coefficients a; and b; are dependent on the location of the point (7, ) in

the streamwise and the crossflow direction. At present, we restrict the discussion to the

discretization in the ¢ direction and will use the short notation given above for the ¢- and

n-direction differencing. (See “ Discretization in the (¢, j) Directions” for more details.)
We define a solution vector {S} = {w, F, ¢, H, L, M, I}T. Because the equations

are nonlinear in {S}, Newton linearization is used to convert the system to a linear matrix
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inversion problem. If superscript » denotes the current iteration stage, let us define {45}

as

{68} = s — 5™ (105)

A linear system is now set up to solve for {65} in terms of the solution at iteration level

n — 1. For example, a term that involves (F")? is written as
(FM? = (F* 14 6F) ~ (F" 1)’ 4 2F"1 §F (106)

In what follows, the superscript n — 1 is dropped and is taken to imply the known values
of {S} at iteration n — 1. A few examples of the linearized formulas with this notation

are given below:

(F™? = F? 4+ 2F 6F
F§ = Fe+ai6F
F!} = Fy+b6F (107)
(FG); = a\G6F
FUFE = Fle+8F(aiF + Fe)

3.2 Linearized system at (i,j)

The system is explicit in £ and n because of our choice of the finite-differencing
scheme and is implicit in the surface-normal direction. The linearized system is repre-

sented at location (z,7), which corresponds to the solution at iteration level » as

. af b{fm...] {55‘5} - {rf} (108)
where af’m and bﬁm are elements of the (7 x 7) blocks in the diagonal and superdiagonal
locations of the linearized block bidiagonal system. The superscript k£ denotes that the
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discretization corresponds to the midpoint of k£ and (k — 1) points. The index [ varies
from 1 to 7, depending on which element of equation (101) is being discretized; m varies
from 1 to 7, depending on which element of {65} it multiplies. The (7 x 7) blocks [aﬁm}
and [bfm] are the only nonzero blocks in the system above because we have a two-
point compact scheme in the & direction. The (7 x 1) vector {rlk} corresponds to the

residual of equation (101), based on the solution {5} at iteration (n—1).

For example, examine the discretization of the second element of the system repre-

sented by equation (101), which can be written as

(IL —wF), — (IL —wF)_,
A B F2 14 F 3 ;

+ {Bng + Bz(FG)n + B;;F?' + B4FG + BsG2 + B(;H] k—l}

AR . . . .
+ T‘;i{ {QBI(FL)E 4+ By(FM +GL), + 2B FL + By(FM + GL) + 2BsGM + Bal]k

- [QBl(FL)E + By(FM + GL), + 2B FL + By(FM + GL) + 2B;GM + Bel]k 1} =0
(109)

where
Ak = (& — (k-1 (110)

We can now construct the elements of the blocks [a;"m], [bﬁm], and {rf} for the case
I = 2 from above by using the linearization procedure explained earlier. Some examples
are given below. The coefficient a’z"l is the coefficient of §w;_, from the second element of

equation (101), which is discretized at (k — 1), and bk, is the corresponding coefficient
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a1 = Fy_,
byt = —Fy

A N .
a§2 = Wg_y — %(zBﬂllF + Byb1G +2B3F + B4G)

e ) )
bE, = —wy — %(‘ZBlalF + BobiG +2B3F + B4G>k

AC? . .
abs = Iy — 1—;’“(231&117 + Byb1G +2B3F + B4G)

r5 = negative of LHS of equation (109)

Similar expressions can be derived from the 7 elements of the system that are
represented by equations (98)—(100). These expressions for the 49 elements of {afm}

the 49 elements of {bk

i,m

], and the 7 elements of {rf} are given in appendix A.
3.3 Boundary Conditions

The boundary conditions at the boundary-layer edge (k = ke, ¢ = () are given as

E; Hy—ge = He (112)

T

Frete =1, Gr=ge = G =

The boundary conditions at the wall (k = 1, { = 0) are given as
Fee1 = Gr=1 =0

szIIHl or Ik=1:]1 (113)

Wr=1 = Wy

The transformed normal velocity at the wall (w;-, or w; or w,) is specified from equation

(45) as

w = lel g{)w R(Joo (1 14)
P* U*

X0
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where i, is defined for general three-dimensional flow or attachment-line flow as

h
Yy = o1 or Py = L (1 15)
Pelelle Pe/‘efe

Suction rate is usually specified in terms of the suction-rate momentum value scaled by

the free-stream momentum as ¢, = pii/psUs-

For an adiabatic wall, I, is specified as equal to zero. For a nonadiabatic case, if
the wall heat flux is known in dimensional units as ¢, then the wall heat flux equation

can be written as

(v—1)Pr
If we apply the transformation formulas and note that at the wall 8, = E4 11 (from equation

v =2 (5 (116)
0z* J

(89)), then we obtain

" R (Tokso\ /pas
=~ Pr( Lfm) Reoo $yTepepie Eali T (117)

where v, is defined for general three-dimensional flow or attachment-line flow as

Ue | fe
= = 118
'f’q PelleS1 o I/)q Petre P ( )

Application of the heat flux boundary condition involves the specification of I; with

equation (117). A negative value of ¢}, corresponds to a cold-wall situation (i.e., heat
flow in the negative z direction). If the wall temperature T, is the known quantity, then
H, is specified (from equation (24)) as

Tw

h e i)

(119)

The incorporation of the boundary conditions into the linear discretized system results
in a shift of the rows downward by four. This produces a system that is block tridiagonal.

The block tridiagonal system is defined by

[ o g% 4 L] [t = |6t (k=1,2,..,ke) (120)
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where

(121)

A+1
_77+ J

Note that the index % on of, 3, and v* corresponds to the location of a particular block

in the (ke x ke) system of (7x7) blocks. The index k of each of the elements in a
block refers to the discretization location. The subdiagonal, diagonal, and superdiagonal

blocks at row location % are obtained as

[ agl a;l:z a{’::)' a{):4 ais ags ai? ]
aa1; G ai?’ a%} 95 0%6 a‘ﬁ?
{a ] = [ G4 G4 Qg3 dgq Qg5 Qg Q47 (122)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 |
[ 2:1:1 222 bklfab 221 225 Zfs 227 ]
%1 %2 “‘rks z4 ZS 26 %7
ST I S SO O SO B (4
{5 } = | by b, b43 bis bis bis b7 (123)
k+1 k+1 k+1 k+1 k+1 k+1 k+1
LTI P P < P . Py -y 1
a 1 a 2 a 3 a‘4 a 5 6126 a 7
-a7iH a?éH “7;1 a%iH 47;1 afgl 7;1 -

Fl={ 0o o o 0o o o o (124)

26



The boundary conditions at the boundary-layer edge result in a diagonal and RHS

block as

[ bfl b‘lkz b’fs b’f4 b’fs blfs b’f? W | r{" )

512121 blzcz “§3b b§4 b'}zcs blge b12€7 Ty

b3, bl?fz b§3 b§4 b’§5 bl§6 b§7 Té

(B = (bbb ks Ml bl B B (o] = | k| k=ke  (129)

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

| 0 0 0 1 0 0 0 | | 0

The diagonal block 3, and RHS block §; that result from a specified wall heat flux

condition (adiabatic or otherwise) are as given below (which corresponds to 61; = 0):

[ 1 0 0 0 0 0 0 C 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
B']=1] 0 0 0 0 0 0 1 |; (8= 0 |ik=1 (126)
k k+1 k41 kK k+1 k41 k+1 k+1
a«iii-l a2; ai; aijl ai;' a (—5*_ a ; T‘i+
I N 5 P e S L.y L it T L +1 retl
21 _’.Z 23 24 ?_5 26 _7 i
a*iH aﬂ-l a7§H a"iH “7;1 a7éH az ! 7’7+1
- ; { (7 L -
For a specified wall temperature condition, the system becomes
Yy
1 0 0 0 0 0 0 7 C 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
8= 0 0 0 1 0 0 0 |;[6]=1] 0 [;k=1 (127)
akit—l ak;l ak;—l al_c;}—l ak;»l ak6+1 ak7+1 s
W 1 .M B ™ Pl T41
o1 G2 Ye3 %4 o5 68 Qg7 g
Lot a5t ary! it d et el s

Appendix A summarizes the information required to construct the block tridiagonal
system. Implementation of the boundary conditions also requires an update that is based
on the current solution, which is done with the update of the nonlinear terms.

Because the Pade formula is a compact scheme based on the solution variables and
their derivatives at two points that span the local cell center, a stretched grid can be

employed without degradation of the fourth-order accuracy of the method. A stretching
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constant £, is defined to exponentially stretch the grid in the ¢ direction as

kE-1
Ck = Cre (m) (128)

3.4 Discretization in the (i,j) Directions

In the fully three-dimensional region (away from the attachment line and side bound-
aries, j = 1 or j = nylim), the differencing in the surface directions ¢ and n is done to
second-order accuracy. In accordance with the parabolic nature of the equations, the ¢

derivative is obtained by the three-point upwind-differenced formula

(ff),-,j =aifij+arfi-1; +a3ficz;j
a1 = (MG — ALLL)/A; az = —AG/A; a3 = AZ /A (129)

A=AGAL1(AG + Abic1); A& =Eij— &imrjy it = 6ilyj — iza,;

When i = 2, the first-order formula with just two points is used, which resuits in the
coefficients

alzl/Aﬁ'g:l/(ﬁg—fl); az = —daiy; a3=0 (130)

A function w; is used to blend the first-order and second-order formulas in a small number
of marching steps. The short notation {aF} used in equation (103) can thus be expanded
in terms of the coefficients given above. At ¢ = 0, the attachment-line equations do not
contain any d/9¢ terms; this condition is incorporated into the solution scheme by setting
up a flag set to zero for the attachment-line solution and to unity for « > 1.

The 7 differencing is accomplished with a combination of two schemes. For situations
where the profile G is positive at ail normal grid-point locations, the standard left-pointing

three-point second-order scheme (which we refer to as the L scheme) is used. When
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the profile has negative values, the “zig zag” scheme (also called the Z scheme), first

proposed by Krause (ref. 4), is employed. For moderate crossflow situations, this scheme

automatically satisfies the zone-of-dependence principle that is outlined by Wang (ref. 5).

The finite-differencing formula that combines the above two schemes can be written as

(f);;=bfij+bafijo1+bsfij—2+bafim1j+ bsficr 1

The coefficients take these values for the L scheme:

by = (An? — Api_1)/A; by =—Anl/A; by=Ani_/A; by=0b5 =0

A = An;Anj_1(Anj + Anj—1); Ay =miy —nij-15 Anj—1 = Mij-1 — Nij-2
The coefficients take these values for the Z scheme:

1

by = 5(?7:‘,;‘ — Mij—1 + Wizt j+1 — Mi-1)

1 1
b= —5(niy = Mij-1); b3 =05 by = —S(mi-1j41 = Miz15); b5 = —by

(131)

(132)

(133)

At n = 0 (left boundary) or at n = nmax (right boundary), no 9/dy terms are present

in the LISW equations; this condition is incorporated into the solution scheme by setting

up a flag set to zero for the boundaries j = 1 and j = rylim. The flag is set to unity in

the fully three-dimensional region. As stated earlier in section “Quasi-Two-Dimensional

Equations for Initial Conditions,” a factor w = w(n) is used to blend the LISW solution to

the fully three-dimensional solution at the boundary-adjacent points. The short notation

{61} that is used in equation (104) is thus obtained directly from equations (131)—(133).
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4. INVISCID INTERFACE

The three-dimensional boundary-layer solution procedure is based on the specifica-
tion of the edge quantities u., v, and T, on a surface grid defined in the coordinate
directions ¢ and 5. In addition, the computation of the edge density p. requires the spec-
ification of the inviscid pressure P or the pressure coefficient C, (for flows that involve
a shock between the free stream and the attachment line). In the general case, for a
nonorthogonal boundary-layer grid, the metric quantities Ay, Ay, and ¢, are also assumed
to be given. Further, the edge value of viscosity 4. is computed from T, with the Suther-
land formula (equation (33)). The above quantities are referenced to the free-stream

quantities (U%,, P%, and T%) and the reference length LZ,.

If we assume that a negligible interaction occurs between the viscous and inviscid
regions, the edge conditions can be obtained by solving the three-dimensional Euler
equations on a sufficiently fine mesh. In some cases such as low-speed flow, a
potential panel code may be substituted in place of the Euler solver, after which an
interface procedure is necessary to process the inviscid results to express them in the
form required by the boundary-layer code. Specifically, this procedure involves (a) the
accurate location of the inviscid attachment line, (b) the generation of the boundary-layer
grid which originates from the attachment line on the upper or lower surface, (c) the
calculation of the edge velocities in surface grid-oriented directions, and (d) the output

of quantities in the required form for the boundary-layer code.

Two approaches are used to calculate the edge velocities (ue, v.) and edge tem-
perature T.. The first approach is to interpolate the inviscid pressure distribution onto
the boundary-layer grid and then calculate the edge velocities and temperature by solv-

ing the limiting equations of the boundary-layer equations at the boundary-layer edge.
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These limiting equations (henceforth called the BL—EDGE equations) are hyperbolic and
can be solved with a marching method that is analogous to the boundary-layer solution
procedure. The source term in these equations is the pressure gradient in the two di-
rections ¢ and 5. The second method involves the interpolation of all the required edge

quantities from the inviscid grid to the boundary-layer grid.

The first procedure is, in principle, more consistent with the boundary-layer solution
method; however, the solution of the BL—EDGE equations may be slightly different from
the solution of the Euler equations. This mismatch in the edge quantities from the two
solutions is attributed to (a) the terms dropped in the BL—EDGE equations, based on the
boundary-layer assumption, and (b) variations in the finite-differencing schemes. In one
case, we have the edge velocities computed from the Euler equations, whereas, in the
other case, the edge velocities are computed from the limiting boundary-layer equations,
based on the Euler pressure gradient. The BL—EDGE equations also assume that the
edge total enthalpy is a constant, which is not necessarily true for the Euler solution.
Note also that accurate enforcement of the condition 9P/dz = 0 at the attachment line
is difficult from a coarse inviscid grid, which may necessitate that the interpolation near
the attachment line be linear rather than spline to ensure a negative pressure gradient
at the attachment line. The interface program includes an option to calculate the edge

conditions by either method.

4.1 Attachment-Line Relocation

After the surface pressure distribution is obtained from the inviscid calculation, the
initial location of the attachment line is obtained by scanning for a maximum pressure in
the vicinity of the leading edge of the wing. However, note that the true attachment-point

location may be located within a bandwidth of one grid point on either side. The true
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location of the attachment point is where the surface velocity in the direction normal to

the attachment line is equal to zero.

In this procedure, the Cartesian velocity components of the Euler solution are con-
verted to surface-oriented velocities that correspond to a boundary-layer surface grid
generated from the initial attachment-line location. This velocity conversion is based on
equations (13)—(17). In general, the component u. at the initial attachment point will be
nonzero. This point is then relocated in the positive or negative direction, depending on
the value and sign of u. and the local estimated value of du./ds;. For example, for the
upper surface at an angle of attack, a relocation in the positive direction means that the
point is moved to include more of the lower surtace; this is done when «. has a positive
value. After the points are relocated with this logic, a new boundary-layer surface grid
is generated from these attachment-line locations. New values of velocity components
are obtained by interpolation. This procedure is repeated until the value of u. at each at-
tachment point is less than a specified tolerance value. A parameter w,, is used to relax
the relocation displacement and to ensure that the iterated locations remain within the
grid-point bandwidth mentioned above. Upon convergence, the pressure is interpolated

with a spline routine from the inviscid grid to the final boundary-layer grid.
4.2 Edge Values by Interpolation

Edge velocities and temperature are obtained by spline interpolation. For a fine
inviscid grid, this method usually produces smooth edge conditions comparable to the

solution from the BL-EDGE equations.
4.3 Edge Values from BL-EDGE Equations
The three-dimensional boundary-layer equations (egs. (19) and (20)), when applied
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at the edge of the boundary layer, result in the BL—EDGE equations and are given as

Ue hlh% hig12 1
i uez+ 7 ue,y +C>4u + Cos u, ve+C)6v = (——CEPI + 0123 P, v (134)

2
Ye LA nul + C ! = (Mg p  Mhepy 135
hy e Ty ey Csgug + C35 ueve + Ciev; ( cz o B ) (135)

Further, H, is assumed to be constant. With P specified from the inviscid solution, the

following equation provides closure for this hyperbolic set of equations:

- 1 9 - 1
T. = H, (1 + 7TM;O) - "TM;qf

(136)
pe = P[Te

The solution to the above system is obtained with a discretization that is identical to the

full three-dimensional boundary-layer equations in the two surface directions. With the

abbreviated notations for the ¢ and  directions, a discretization with Newton linearization

yields the system

[7211"(2a1ue + {auc} + blve%) 711_2(1’1"6 + {buc}) } {8'“6 }

ﬁlT(alve + {ave}) h%(alue;:—l + 2bve + {bve}) Fve
ue Ju ve QU
{n TR Ea (137)
- b - g

where

ry = m{ L1 P+ h—"’r”—P } — (Caqu? + Casueve + Cogv?)

r2 = leoope{thnPI - th } — (C34u2 + Casucve + Cagv?)
The terms marked by an underline apply to the three-dimensional region only. These
terms are set to zero per the LISW condition at j = 1 and j = ny. Note that the P, terms

are retained for LISW, however.

The solution is obtained by inversion of the system, which is followed by an iterative

update for nonlinear terms.

33



5. BL3D EXAMPLE CASES

Two test cases are presented here. The first test case is that of a moderately swept
(A = 33°) tapered wing in subsonic flow. The streamwise cross sections of this wing
correspond to NACA 0012; however, for generality, calculations of metrics and other
parameters are done with the assumption that the wing is defined in terms of discrete
coordinates. The second test case is a highly swept (A = 70°) wing in supersonic
flow, similar in planform to that of the F16XL aircraft, with cross sections defined in
discrete coordinates. For both cases, the inviscid results are obtained by solving the
Euler equations. The computer code CFL3D (ref. 6) is used for this purpose, with the
viscous terms set to zero for the Euler calculation. An interface routine processes the
results and feeds the resulting edge conditions to BL3D. For validation (case 1 only),
the results obtained from BL3D are compared with the results from the thin-layer Navier-
Stokes code, which is also obtained with CFL3D. For the supersonic wing case, we
present comparisons of the BL3D results with the solution from a conical swept wing
boundary-layer code developed by Kaups and Cebeci (ref. 3). In addition, runs are
made with a uniform suction distribution (case 1 only). These results are also compared

with the corresponding Navier-Stokes solution.

5.1 Geometry and Conditions for Case 1

The planform of this wing is a trapezoid for which the root chord is 1 ft and the
leading-edge sweep is constant at 32.73°. The wing has a span of 2 ft and the trailing-
edge sweep is constant at 18.88°, which results in a tip chord of 0.398 ft. The tip-section
leading edge is at z'* = 1.286 ft and the tip-section trailing edge is at z™ = 1.684 ft.
The streamwise cross section of the wing corresponds to the NACA 0012 section. The

free-stream conditions are M, = 0.5, a =2°, P% = 2116 psf, and TZ, = 520°R. The wing
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is assumed to be symmetrical about the root chord plane.

5.2 Euler Solution for Case 1

The surface distribution used in the Euler grid consists of constant percent chord lines
and constant percent span lines. In the spanwise direction, the grid has 41 points on the
wing surface, which corresponds to a span distance of 0.05 ft between grid lines. In the
chordwise wraparound direction, the grid has 257 points, and in the wall-normal direction
the grid has 49 points that are stretched exponentially. The grid is further extended into
the wake region and off the tip of the wing. The Euler computation is done with the code
CFL3D. The results from the calculation are obtained at the centers of the grid cells;
thus, 40 cell centers exist in the spanwise direction. Let us denote these locations by
the symbol j(INV). To avoid the region very close to the symmetry plane and the wingtip,
we restrict our analysis to the region 7 < j(INV) < 35, which corresponds to 0.325 < y™* <

1.725. The middie location of this region is at j(INV) = 21, which corresponds to y'* = 1.025.

Figure 2(a) shows the surface distribution of the Euler grid-cell center points (note
that only every fourth point is plotted in the chordwise direction for clarity). Figure 2(b)
shows the corresponding boundary-layer grid on the upper surface. The boundary-layer
grid originates from the attachment line, and the z-coordinate is measured in terms of
the surface arc length, which is normalized by a length such as the local chord length or,
in the present case, by the maximum arc length. The spanwise coordinate y is defined

as the local span distance from the symmetry plane.

The inviscid results used in the interface routine are the three Cartesian components
of the velocity on the wing surface, the inviscid wall density, and the temperature.
The pressure coefficient on the surface can be calculated from the above. Alternately,

the pressure coefficient can be specified, and the edge temperature can be calculated
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(assuming that the edge density is given). Figure 3 shows the variation of the pressure
coefficient obtained from the Euler solution at three span locations where j(INV) = 7, 21,
and 35. Note that the effect of the taper is to create a favorable pressure gradient in

the spanwise direction.
5.3 Euler-BL3D Interface for Case 1

The details of the procedure for relocating the inviscid attachment line are presented
in Figures 4—7. Figure 4 shows a plot of the iterated attachment-line locations. This plot
is interms of (i, ) of these surface points and corresponds to a view from upstream of
the wing leading edge (not to scale). The initial attachment-line location that corresponds
to the peak in the pressure coefficient near the leading edge is shown in solid symbols.
The inviscid grid points on the upper and lower sides of this line are shown as dashed
lines. These lines bound the uncertainty on the true attachment-line location because of
the coarseness of the inviscid grid. Also shown in Figure 4 are the iterated locations of
the attachment line. As explained in “Attachment-Line Relocation,” the iteration is based
on a relocation strategy such that the local inviscid velocity vector is exactly tangential
to the attachment line. Note that the line that joins the final attachment-line locations is

much smoother than the original line.

Figure 5 shows the velocity u. interpolated at the attachment-line location that
corresponds to successive iterations. Note that the initial values of . are relatively
high (£0.04) and that the objective of driving u. to near zero (< 0.0001) is achieved
in seven iterations. Figure 6 shows the corresponding variations of the velocity v, on
the attachment line. Here again, the final v, variation is smooth. Figure 7 shows the

resulting variation of ), on the attachment line.

The boundary-layer surface grid is generated from the attachment line on the upper
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or lower side. In the present case, 40 points are generated in the chordwise direction
between the attachment line and the local 5 percent chord location. Beyond this point,
the boundary-iayer grid coincides with the inviscid grid, and no interpolation is required.
The stretching of the surface distribution near the attachment line is done so that the grid

blends smoothly with the inviscid grid (at the 5 percent chord location in the present case).

After the generation of the surface grid, the inviscid pressure is interpolated to the
boundary-layer grid. The boundary-layer calculation is restricted to the region that is
bounded by the j(INV) = 7 and j(INV) = 35 spanwise locations. The regions outside
these limits are unsuitable; the locally infinite-swept wing assumption does not apply in
these regions because of the proximity of the flow to the symmetry plane or the wingtip.
The boundary-layer grid notation denoted by j(BL3D) is thus based on the left boundary

of J(INV) =7. In other words, the j(BL3D) = 1 location is identical to the j(INV) = 7 location.

Figure 8 shows the chordwise variation of the interpolated C, values on the boundary-
layer grid at three spanwise locations. The interpolation is accomplished with a spline
routine. In the present case, because the inviscid grid has good resolution near the
leading edge and the inviscid results are smooth in this region, no smoothing is required.
However, in the absence of the above, a smooth spline interpolation may be required.
In this event, the amount of smoothing and the resulting interpolated pressures must
be carefully monitored. If the streamwise pressure gradient at the attachment line is
not negative, a marching of the boundary-layer solution away from the attachment line
may not be possible. Spline and other higher order interpolation methods are likely to
introduce nonnegative pressure gradients at the attachment line. Hence, in some cases,
a locally linear interpolation may be required near the attachment line to ensure negative

pressure gradients.
All physical distances, such as the root chord length, are normalized by a reference
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length L} . Further, the boundary-layer grid =~ (and ¢-) coordinate is defined as the local
chordwise arc length divided by the local maximum arc length up to the trailing edge. The
boundary-layer grid y- (and also »-) coordinate is defined as the local spanwise distance.
With this definition, the metric quantities can be computed with equations (1)—(3). For
the present case, the variation of A, k2, and g;2 in the chordwise direction at the j(BL3D)

= 1 location is shown in Figure 9.

As explained in “Edge Values by Interpolation,” the edge velocities can be obtained
by direct interpolation. In this method, the three Cartesian velocity components from
the inviscid solution are interpolated. Subsequently, the edge velocities in the r and y
directions are obtained by an inversion of the system given by equations (13)—(17). The

edge temperature is also interpolated to complete the interface to the BL3D program.

In the second method, the BL—EDGE equations are solved with the input pressure
distribution as outlined in “Edge Values from BL—EDGE Equations.” Figure 10 shows a
comparison of the edge velocities obtained by either method at the j(BL3D) = 1 location.
Note that the two results agree well. Figure 11 shows contour plots of the edge velocity
ue ON the upper surface of the wing that are obtained from the two methods. A slight
difference in the variation is caused by the fact that the BL—EDGE solution assumes
a locally swept-wing condition at j(BL3D) = 1 and j(BL3D) = 29. Another cause for
this difference is that the finite differencing used in the Euler solution is different from
that used in the BL-EDGE solution. However, for the present case, both results are
acceptable. Figure 12 shows the corresponding comparison of the edge velocity v.. The

edge temperature variations also compare well.
5.4 BL3D Solution for Case 1
The three-dimensional boundary-layer solution follows the sequence below:
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(a) Input boundary-layer edge data. The input consists of the boundary-layer grid
dimensions (nz, ny); the coordinates (z, y); the metric quantities ky, k2 and gi2; and
edge values u., v, and T.. Further, if the streamline between the free stream and
the boundary-layer attachment line contains a shock (nonisentropic region), then the
input of C, or P is required to calculate the edge density p.. Other inputs are the
free-stream conditions, the reference length, and other parameters that pertain to the

solution procedure.

(b) Setup of initial profiles. Solution profiles that correspond to the similarity solution
for a flat plate or wedge are used as initial profiles to start the locally infinite, swept

attachment-line solution at ¢ = 1, j = 1 of the boundary-layer grid.

(c) Setup of edge coefficients. This setup is based on the edge conditions and

gradients. The coefficients A;, B;, C;, and D; are calculated.

(d) LISW solution. This solution is obtained at the two boundaries j = 1 and j = nylim
by marching in the z direction. The terms that involve derivatives in the y direction are

set to zero for this case. Further, at i = 1, the attachment-line equations are solved.

(e) Solution of the three-dimensional region. Given the initial plane solution and
the side boundary solution, the three-dimensional region can now be solved with the L
scheme or the Z scheme for the span derivatives. A switching from the L scheme to the

Z scheme occurs when the profile of G has a negative element.

Depending on the pressure distribution, the solution region can be restricted to (1,
nalim), (1, nylim). After the convergence of the solution at each (i, j) point, quantities
such as the boundary-layer thickness, the skin-friction coefficient, and the crossflow

Reynolds number are calculated.
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5.5 BL3D Results for Case 1

Comparison of the BL3D solution is made with profiles that are obtained from the
solution of the NS equations with the code CFL3D. This code was run on a grid with the
same surface distribution as the Euler grid, but with 81 points in the wall-normal direction.
The grid stretching was designed to include about 30 to 40 points in the boundary layer
of the flow. The flow was assumed to have an abrupt transition to turbulence at the 25
percent location on the wing. This assumption ensures that the flow remains attached
and thereby avoids the numerical problems caused by the laminar separated regions.
The profile comparisons are restricted to locations upstream of the 25 percent chord
station. Because of the large amount of data, the comparison plots are presented for a

few locations in the flow that are representative of the entire flow solution.

Figures 13—18 compare of the BL3D and NS profiles at the j(BL3D) = 1 plane.
We present comparisons at six locations in the chordwise direction. These locations
approximately correspond to chord locations of 1, 2, 3, 6, 12, and 23 percent. Shown
are the profiles of spanwise velocity v, chordwise velocity », and temperature 7. At
these locations, the spanwise velocity profile assumes different shapes with inflection and
reversal regions. The NS profiles are shown in open square symbols. The BL3D profiles
at this j location are the solution of the LISW equations. In spite of this assumption,
very good agreement is obtained until the 23 percent chord location. Note that the edge
velocities used as input for the BL3D computation are the interpolated values from the
inviscid code. The edge velocities that are computed from the NS solution are slightly
different than those from the Euler solution. This difference is the main contributor to
the lack of better agreement between the two solutions. Also, some differences are
attributable to the fact that the profiles are not compared at exactly the same location.

The temperature profiles at the 12 percent chord location and beyond are different
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presumably because the boundary-layer interaction becomes more significant in this
region. Furthermore, some differences near the attachment point are caused by the fact
that the attachment point from the NS solution is shifted slightly compared with the Euler

location. Overall, the agreement is satisfactory and validates the BL3D results.

The program also calculates the crossflow within the boundary layer relative to the
local edge streamline direction. In the present report, crossflow is defined as negative
when pointed toward the wing root. In Figure 19, we compare the streamwise velocity
profiles u, at six representative locations with the corresponding NS profiles. Figure 20
shows the corresponding crossfiow velocity profiles of v;. The crossflow that is predicted
by the BL3D code is slightly larger than the NS solution in the negative crossflow region.
The crossflow Reynolds number Recp is defined as

* x K
vs,maxaﬁ.lpe

- (138)
He

Recp =

where v} .. is the maximum absolute value of the crossflow velocity v; and 67, is the
normal distance at which the v} profile decays to less than 10 percent of v; .. (when
scanned from the edge down to the wall). This parameter has a strong correlation to
the growth of crossflow instabilities in a three-dimensional boundary layer. Figure 21
shows the variation of this parameter in the chord direction at the j(BL3D) = 1 location

compared with the NS solution.

Figures 22-30 present the profiles at the j(BL3D) = 15 location at the y = 1.025
spanwise station. The overall comparison is good, although in some locations differences
in profiles exist mainly because of the fact that the edge conditions from the NS and
Euler results are different.

Figure 31 shows the contours of the boundary-layer thickness and the skin-friction

coefficient in the z direction obtained from the BL3D calculation. The contours are smooth
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and blend smoothly with the infinite swept-wing solutions at the ; boundary locations.
Note that the flow is close to laminar separation as indicated by the near-zero values

of C;, at { = 0.25.

Figure 32 shows the contours of the crossflow Reynolds number and the maximum
absolute percent crossflow on the upper surface. The values of Recr for this case are

under 100, and the maximum crossflow reaches a maximum of about 12 percent.

5.6 Results With Suction for Case 1

Solutions were obtained from the NS and BL3D solvers with boundary-layer suction.
A constant amount of suction ¢; (equal to 0.0005) was assumed. Figure 33 shows a
comparison of the resulting solution profiles at the j(BL3D) = 15 plane. The profiles with
no suction are also shown for comparison. Figure 34 shows the resulting Reqr values;

a substantial reduction is produced in the crossflow with suction.

The attachment-line Reynolds number Rey is defined as

v* *

e,i:lgm,izl
Reg = :
”e,izl

*
pe,i:l

(139)

where §;. is the momentum thickness. This parameter is important because of
attachment-line stability considerations. Figure 35 shows a comparison of the Rey values
at the attachment line both with and without suction. The comparison with the values

obtained from the NS solution is satisfactory.
5.7 Geometry and Conditions for Case 2
Case 2 is the boundary-iayer flow on a supersonic wing of 70° sweep at a free-

stream Mach number M, of 1.6 and at an angle of attack of 0°. The planform is similar

to the wing of the F16XL aircraft. The other input free-stream conditions correspond
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to an altitude of 40,000 ft ( PX = 393.13 psf, T% = 390°R). The free-stream Reynolds

number is 3.06x10° per ft.

Figure 36 shows a top view of the Euler grid used in this case, with an inset showing
a chordwise section. The wing is assumed to be symmetric about the (z", 2"*) plane at
the span station j(INV) = 1, which is at a distance of 27 in. from the fuselage axis. The

flow region of interest corresponds to the y™* range of 72.8 to 132.2 in.
5.8 Euler Solution and BL3D Interface for Case 2

The inviscid pressure distribution on the wing upper surface, obtained from the Euler
solution, is shown in Figure 37. Here, the streamwise distances are shown in terms
of 2" — 't , which corresponds to the chordwise distance from the local leading-edge
location. The variation of pressure coefficient and the wing cross section at the span
location j(INV) = 16 (90.2 in. from fuselage axis) is shown in Figure 38. Attached laminar
flow does not exist beyond a z'* — z'f - distance of 3 ft; hence, the calculations reported

here are for an z'* — '/ of less than 3 ft.

The interface program is essentially in the same form as case 1, except for minor
changes in reading in and manipulation of the Euler solution input. The boundary-layer
grid is specified as containing 40 points clustered within the 2 percent chordwise location.
The edge velocities and temperature are calculated either by direct interpolation or by
solution of the BL—EDGE equations. Good comparisons of the edge values u., v, and
T, from the two methods were obtained, as shown in Figures 39—41. Figure 42 shows a
comparison at the span station j(BL3D) = 5. In the following section, the boundary-layer

solution at this span station will be presented in detail.
5.9 BL3D Solution for Case 2
Following the interface run, the present code BL3D was run in a region bounded by
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1 < j(BL3D) < 9. The results reported here correspond to the solution at j(BL3D) = 5.
For comparison, the Kaups-Cebeci code was also run at this section.

Figure 43 shows the comparison of the u,,v,, T profiles at two chordwise locations
close to the attachment line at the span station j(BL3D) = 5. The agreement is good,
except for a very small reduction in the magnitude of the crossflow profile obtained
from BL3D. Figure 44 shows the comparison of the profiles at two locations (1 ft and
2.26 ft in surface arc length away from the attachment line). Here, the streamwise and
temperature profiles agree well. The crossflow profile from BL3D shows slightly reduced
crossflow. Note that because the flow becomes increasingly three dimensional away
from the attachment line the two codes are expected to differ in solutions.

Figure 45 shows a comparison of the resulting crossflow Reynolds number values
from the two computations. Again, the reduced crossflow predicted by BL3D can be

noted.
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Appendix A

Coefficients of the Linearized System of Compressible Three-Dimensional
Boundary-Layer Equations Discretized With a Fourth-Order Pade Formula

(1) Coefficients of Continuity Equation:

alfl = -1

afy = —crren )i
afs = —cue(e12)g_y
a’f4 =0

als = —carlen )i
ats = —canle12)5_y
af-, =0

k=1

bF, = —c(enn);
by = —cre(erz)y
B, =0

s = corlen),
bfe = C2k(612)k
k

b7 =0

rf = —(q) + (q11)5-1 + crl@12)y + c1e(@2)p_1 — c2k(q13)e + car(q13)5_s

Q1 =w

qi2 = AtFe + AoF + A3Gy + AG
q13 = AILE + AL + A3M,, + AyM
e11 = ajA1 + Az

erg = b1 Az + Aq

1, .
Cik = §A€k

1
Cok = '1_2ACI?
AC = (& — (k-1



(2) Coefficients of ¢ Momentum Equation:

051 = Fr1
aky = wp_y — epean)k—1 — car(eaz)k-1
aky = —cip(e2s)k_1 — car(e24)k1

. N
agy = —c13Be
k
ags = —lk—1 — car(e21)_;
k
age = —Ccor(€23)p_q

. .
azy = —car Bg

b5, = —Fy

bEy = —wi — crrlea)r + cok(eaz)r
bhy = —crr(e2a)k + car(e2a)i

b5y = —c1xBs

bEs = Ik + carlean);
bhe = corleas)y
b’2°7 = ¢4 Bg

ry = —(g21); + (g21)5—; + c1x(g22)x + c1x(g22)5—1 — c2k(g23)r + c26(g23) 5y

@1 = (IL — wF)

g2 = Bi(F?) + Bo(FG), + B3F? + ByFG + BsG* + BsH

g3 = 2By(FL) + Bo(FM + GL), + 2BsFL + By(FM + GL) + 2B;sGM + BsI
€21 = (2(1131 + 233)[" + (ble + 1;’4)@'

eas = (2a1131 +2B3) L+ (182 + Ba) M

€3 = (ble + B;)F +2B5G

€24 = (ble + By) L +2BsM



(3) Coefficients of  Momentum Equation:

a§) = Gr-1

afy = —cir(esn)k—1 — canles2)i—1
a¥y = wi_1 — crx(eas)i—1 — carlesa)i_1
a’§4 = "Clkéﬁ

afs = —corlear)y_y

afg = —lk_1 — car(ens),

a§7 = _CZkéG

b§1 = —Gj

b5, = —cik(es)k + can(eaz)x

b5s = —wy — cix(ess)r + car(esa)s
b5y = —c1xCs

bEs = car(ear)y
bgﬁ = lk + Czk(633)k
b5 = caxCs

ry = —(g31); + (@31)5_1 + c1r(g32)p + c1x(932)5_; — con(g33) + conl(g33)p_,

g31 = (IM — wG)

g32 = C1(FG)¢ + C2(G?), + C3F? + C4FG + C5G* + CsH

933 = C1(FM + GL); + 2C3(GM), + 2C3FL + C4(FM + GL) + 2C5GM + CeI
es1 = 203 F + (alcl + Cy)a

es2 = 2C5L + (a1C1 + C~'4)M

€33 = (alcl + 6'4)F+ (25102 + Qés)G

e3q = (alcl + 6'4)13 + (26102 + QCS)M
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(4) Coefficients of Energy Equation:

a§) = Hy

ak, = —cpp(ea1)r—1 — cor(€a2)k-1
aky = —cyp(ea3)r—1 — corleaa)k—1
a§4 = Wg-1 — Clk(€45)k_1 - Czk(€46)k_1
aks = —car(ea1) -

a§6 = —cor(e43)r—1

a§7 = _(lp)k_l - C2k(845)k_1

b5, = —Hy

b¥, = —cik(ean)r + carleaz)s

bks = —cir(es)r + cox(eaa)i

bE, = —wy — crx(eas)y + car(eas)i

bis = corlear)r
by = car(eas)y
b7 = (Ip), + car(eas)y

b = —(qa1); + (qa1)k_y + c1r(qa2)y + c1r(g42)g—1 — c2(gqa3)g + ok (943) k1

g1 = (I,] —wH)

qa2 = D1(FH), + D2(GH), + D3sFH + DyGH + Ds

gis = Dy(FI + HL) + Dy(GI + HM), + Ds(FI + HL) + Dy(GI + HM) + Dj
eq1 = (a1D1 + D3)H

es2 = (a1 Dy + D3)I

es3 = (b1 D2 + Da)H

= (b1 D2 + D)1

eqs = (a1 D1 + D3)F + (b1 D2 + D)G
ess = (a1D1 + D3)L + (b1 D2 + D) M
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(5) Coefficients of F-L-L Equation:

1
as) = "'Czki;'_l‘Lk—l
asp = —1-— Czklk (e51)p_1
-1
1
as3 = —Czkr—(%?)k—l
-1
asq = —CZkT;BS

1
ass — —Cikp — Czkik—;(—l’ + w)k—-l

ase =0
as7 =0
1
bs = C2kTLk
k

]
bsa =1+ Czkz;(em)k

bsz = Czk'l;(esz)k

1 -
bsy = C2kl_'Bﬁ
k
1
bss = —cix + c%K(_l, +w),
bss = 0
bs7 =0

r¥ = —(gs1)g + (051)5_q + c1r(gs2)g + c1x(g52)5_1 — €2k(g53)y, + c2k(g53)x_1

gs1 = F
gso = L
gs3 = -;—{Bl (FQ)E + B2(FG),” + BgFZ + B’4FG+ BsG2 + BGH

—~ Ll +wl + AlFFf + AgFG,]}

e5] = (2&131 + 233 -+ alAl)F + (blBg + B4)G + A1F£ + Aan
esy = (ble + By + 51A3)F +2BsG
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(6) Coefficients of G-M-M Equation:

1
a61 = —Cak I le—l
1
ag = —Cka(GSI)k—l
1
ag3 = —1 — co I, (e62)f—1
-1
1 .
agy = —C2km06
ags = 0
1
Qg6 = —C1k — Cokp — (=0 +w)_,
ag7 =0
1
bﬁ] = CZkI_AIk
k
1

bez = CQk'l"(t’s])k
k
1
bes =1+ Czkl-k'(esz)k

1 -
bes = Czkl—cs
k
bgs = 0
1
bes = —c1k + CzkE(—l' +w),
be7 =0

r& = —(gs1); + (g61)5_y + c1x(g62)x + c1x(962)5_1 — c2k(q63)) + 26 (263) 51
g1 =G

g2 = M

1 . o oA . .
q63 = 7{01(FG)£ + CQ(Gz)n + CsF- + C4FG+ 05G2 + CGH

—MI'+wM + A1GFe + AsGG,,}

es1 = 2C3F + (alcl +Cy + alAl)G
egy = (alcl + é4)F + (21)102 + 205 + b1A3)G + A]Ff + A3G"
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(7) Coefficients of H-l-l Equation:

1
ary = —Czk(l—)—wk—l
PlEk—1
1
ary = —C2k'(l)_'(e7l)k_1
P/k—-1
1
ary = _C2k(l ) (672)k—1
Plk—1
arg = —1— Czkm(ew)k-l
a5 =0
are =10

1
ary = —Cl1j — Cgk(—l;)—’:—l(—l;, + w)k—l

by = cop T wy
(Ip)y
1
bra = cor—(er1)
(p)g g
brs = cop———(er2
2 (lp)k )k
1
by = 1+ cop (er3)
4 2 S k
brs =0
b7 = 0

1
b1 = —cip + Czk(—lp')—k'(—l; +w),

r¥ = —(gm1)p + (g71)5_q + c1x(g72)x + crr(gra)i_y — cox(@73)y + c2x(g73)k 1
gn=H

gra=1
g3 = li{DI(FH)E + Dy(GH), + DaFH + DyGH + D
P

— Il +wl + A HF + AgHG,,}

e = (alDl + Dy + 611/11)H
ety = (lez + Dy + 51.43)H
ey = (1D + Dy) F + (D + Dy )G + ArFe + 436,
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Appendix B

User’'s Manual for the BL3D 'Program

The BL3D program package consists of a collection of program files, input files, and
output files that relate to the solution of three-dimensional boundary-layer flow on a swept
wing. In addition to the BL3D program files, the program package includes files related
to the Euler and Navier-Stokes calculations for the two example cases and the interface
programs. Some of these files are not directly related to the core program BL3D, but
were developed for the validation of the code. These include Euler and Navier-Stokes
grid and solution files as well as programs used in processing the Navier-Stokes results
for comparison with the BL3D results. All the files have been archived on the NASA
Langley Masstor system and can be made available per individual request.

Table 1 at the end of this section gives a list of important computer variable names
used in the programs and the corresponding translation to the variables used in the
formulation as listed in “Nomenclature”. This list may be useful for customizing the

program for a particular application.

Program Structure

The files are divided into subdirectories as follows. Each subdirectory contains a
README file with a short description of the contents of the subdirectory and instructions
for running the programs.

bl3d/euler/casel. Contains files that correspond to generation of the Euler
solution for case 1 (subsonic swept wing) with the code CFL3D. The program CFL3D
is not included.

bl3d/interface/casel. Contains interface programs and input files used in

processing the Euler solution for case 1 and generation of the data file required in the

BL3D run.

B-1



bl3d/bl/casel. Contains the BL3D program files used for case 1.

bl3d/ns/casel. Contains files that correspond to the Navier-Stokes solution with

CFL3D for case 1.

Similarly, bl3d/euler/case2, bl3d/interface/case2, bl3d/bl/case2,
bl3d/ns/case2 are subdirectories that correspond to case 2 runs for a supersonic
swept wing. The subdirectory bl13d/ns/case2 contains files that relate to the applica-

tion of the Kaups-Cebeci code for case 2.

The files in the subdirectories b13d/euler and bl3d/ns are not of direct interest
here. The README files in these subdirectories and comment statements in the program
files may be consulted for more detailed information. Presented below are details on the

interface and boundary-layer program files for the two test cases.

Interface Program Inputs

The inviscid results are assumed to be available on a grid that is generally (though not
strictly) oriented along the constant span and constant chord directions. The boundary-
layer grid stretching, the interpolation, and the BL—EDGE solution procedure are based
on this assumption. The surface grid is also, in general, nonorthogonal. The inviscid

Euler results are assumed to be available in either of the two following formats:

(a) Two separate files, one of which contains the grid points and the other, which
contains the Euler solution at the cell center points. The actual read statement (e.g.,

from bl3d/interface/casel/rinvis. f) is as follows:
The grid file:

open(unit=1, file="grid’, form="unformatted’, status='0ld’)

read(1l) jdim, kdim, idim

read(1l) (((xg(3j,k,1i),3=1,jdim) ,k=1,kdim),i=1,idim),
({({yg(j,k,i),3=1,jdim) ,k=1,kdim),i=1,idim),
{({(zg(J,k,1),3=1,jdim) ,k=1,kdim),i=1,idim)

The solution file:
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gé?ﬁ?ﬁif? Ei%iYézgiest bin’, form='unformatted’, status='0ld’)
read(2) titlw, xmachw, jt kt, 1t alphw,ntr,ntime
read(2)((((Q(J k,1, l) j=1, jdlm 1), k=1, kdlm 1),i=1,idim-1),1=1,5)
The above file format corresponds to output from the program CFL3D. The i, 5,k
indices in the read statement are defined differently compared to the BL3D terminology.
Here, i refers to the span direction, and j refers to the chord wraparound direction that
starts from the wing lower surface trailing edge or the downstream plane of the lower
surface wake. Note that in this case the solution points are one less than the grid points
because they are obtained at the cell centers. Following these read statements, the
i, 3 indices are switched to correspond to BL3D notation and are normalized with the
reference length reflen. The coordinates and solution on the wing surface alone are
then extracted. In some cases, the sign of the coordinate y and velocity component vc
may have to be switched because in BL3D the coordinate system assumes a right wing.

The variable g contains the solution vector in standard CFL3D notation (see the README

file for more detailed information).

(b) A provision is included in the interface program to input the inviscid data on the

surface only from a single ASCII file in the following format:

open(unit=21, file='edge.dat’,6 status='unknown’)

read (21, *)1v,jv

read (21, *) ((xc (1, j) 1 1,iv), j =1, 3jv)
read(2l,*)((yc(1 3), 1 1,1iv), J =1, jv)
read(21,*) ((zc(i,j),i=1,1v), j =1,3jv)
read(2l,*)((uc(1,j),1=1 iv), J =1, jv)
read(21,*) ((vec(i,3),1=1,1iv), i=1,3v)
read(21,*) ((we(i,]),i=1,1iv),3=1,3v)
read(21,*) ((tc(1i,3),1=1, 1v) ij=1,3jv)
read(21,*) ((pc(i,Jj),i=1,iv), =1, jv)
read (21, *) ((xs(1i,3),1=1, 1v+1) j=1, jv+l)
read(21,*) ((ys(i,J),1i=1,1v+1l), 3 =1, jv+l)
read(21,*) ((zs(i,J),i=1,1iv+1l),3j=1, jv+1)

The variables iv, jv refer to the surface grid cell center dimensions in the chord
wraparound direction and the span direction. The variables xc, yc, zc are coordinates

of the cell centers (assumed to be nondimensionalized with reflen) and uc, vc, we are
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the Cartesian velocity components (normalized by free-stream velocity) from the inviscid

solution at the cell centers. The variables tc, pc are nondimensional temperature and

pressure coefficient values at the cell centers. The variables xs,ys, zs are the actual

normalized grid locations (not used in the program except for plot output).

The input file for the interface run is in the following format:

bl3d/interface/casel/inp.dat

CASE 1, INTERFACE RUN

amach gam
0.5 1.40
itel ite2
33 289

jl j2

7 35

ncp Xcp

40 0.05
itat uerlim
50 0.0002
nxw Jlw
100 7

isur
1
jtel
1
refl
1.0

omat
0.8
32w
35

f istart
0
jte2
43

en

t
iout
1

Note that each input line is preceded by a line that contains a description of the

input variables (read as a character variable and ignored). The description of the input

variables is as follows:

amach
gam
isurf

istart

itel,ite2, jtel, jte2

j1l,32

reflen

Mach number
ratio of specific heats
upper or lower surface (1 or 0)

restart option

=0 full run, input from
inviscid files ‘grid’, ’'rest.bin’

=1 run with data read from ’'edge.dat’

=2 read inviscid files, write ’‘edge.dat’
and stop

indices corresponding to wing edges
itel,ite2: lower and upper surface TE
indices (inviscid data assumed to be
indexed in the chord-wrap-around dir-
ection from lower TE to LE to upper TE)
jtel,jte2; span direction wing boundaries

limit inviscid data processing to (jl->32)
normalizing length, usually root chord;
if grid units are in inches for example,
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necp, Xcp

itat,uerlim, omatt

nxw, jiw, j2w

iout

reflen can be used to be consistent with
units

number of points in the BL grid between
attachment point and local chord fraction
=xcp (30,0.05 for example for 30 points
from attach. point to 5% chord location)

max number or attachment point relocation
iterations and error tolerance on ue
(20,0.001 recommended)

omatt is a relaxation factor for attach-
ment point relocation iteration, <1;
smaller values give slower convergence,
but less oscillation

BL3D output option

output file write will be from

i=1 to i=nxw, j=jlw to j=j2w
nxw.LE.nx; jlw.GE.jl ; J2w.LE.Jj2

if nxw is set to 0, nxw taken to be=nx

=1, output interpolated ue,ve,te values
=2, output ue,ve,te from
solution of BL-EDGE equations

Note that the istart=1 option corresponds to the input of inviscid data from a single

ASCII file as described previously. If the calculation is for the lower surface (isur£f=0)

and if istart=0, then the program reverses the i indexing direction (in effect, the lower

surface becomes the upper surface of an inverted wing).

Interface Program Output

The output for the BL3D code is written to a binary file called bl.bin. The format

for this write is as follows (see also the file blout.f):

nyw=j2w-jlw+1l
write(10)nxw,nyw

write (10) ((x(i,3),1i=1,nxw),Jj=jlw, j2w)
write (10) ((y(i,3),i=1,nxw),j=]31lw,32w)
write(10) ((hl(i,j),i=1,nxw),j=jlw, j2w)
write(10) ((h2(i,3),i=1,nxw),j=Jlw, j2w)
write(10) ((g12(i,3),i=1,nxw), j=jlw, j2w)
if({iout.eq.l) then

write(10) ((ue(i,j),i=1,nxw),j=jlw, j2w)
wviite(lo) ((ve(i,3),i=1,nxw),3=3jlw, j2w)
else

write(10) ((use(i,j),i=1,nxw),Jj=jlw, j2w)
write(lO)((vse(i,j),i=l,nxw),j=jlw,j2w)
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endif

write(10) ((pb(i,Jj),i=1,nxw), j=jlw, j2w)
if(iout.eq.1l)then

write(10) ((tb(i,Jj),i=1,nxw),j=jlw, j2w)

else

write(10) ((tse(i,j),i=1,nxw),j=Jlw, j2w)
endif

write(10) ((xb(i,3),i=1,nxw), j=jlw, j2w)
write(lO)((Yb(i,j),i=1,nxw),j=jlwfj2W)
WritE(IO) ((Zb(ilj) lizllnXW) /j=lelj2w)
write(10) ((ub(i,j),i=1,nxw), j=jlw, j2w)
write(10) ((vb(i,J),i=1,nxw), j=31lw, j2w)
write(10) ((wb(i,j),i=1,nxw), j=jlw, j2w)
write(10) (xsave(nx, j),j=jlw, j2w)

The output of xsave corresponds to the normalizing arc length values used in each
span station j=jlw, j2w. Note that the dimensional distance from the attachment line
in the x direction (i.e., surface arc length) is given by x (i, j) *xsave(j)*reflen.
Other output files contain information about attachment-line iteration convergence, the
accuracy of the interpolation, and the BL—EDGE solution. The files README, main. f,
as well as comment statements throughout the various subroutines, may be consulted

for more information on these outputs.

Running the Interface Program

The program routines are contained in the following files:

main. f

attach.f
blout. £
inputs. f
metrix.f
pack. f

ploti.f

rinvis. f
sdist.f
solv3.f

surf . f

In addition, the include files com, compack, the makefile makefile, and the input

file inp.dat are also provided. A brief description of some of these files follows:

inputs. f. Reads the input file inp.dat.
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rinvis. £. Reads the inviscid data; extracts required data needed for the upper or

lower surface; normalization of coordinates and flow quantities.

attach.f. Locates the initial attachment line (for first pass only); generates a
boundary-layer surface grid that originates from the currently defined attachment line;

calls sdist. £ for a suitable grid stretching.

metrix.f. Calculates metric quantities hl,h2,gl2 based on currently defined

boundary-layer grid.
surf. £. Solves the BL-EDGE equations if this input option is selected.
blout. f. Outputs the file bl.bin required for BL3D run.
pack. £. Library of cubic tension spline interpolation routines.

The include file com has the following parameter statements (which correspond to

case 1 in this example):

parameter (jdim=321,kdim=49,1idim=53)
parameter (ivm=257, jvm=43)
parameter (nxm=300, nym=jvm)

The dimensions depend on the inviscid grid size and the boundary-layer grid size;

see comment statements in the file com for selection of these values.
The include file compack is used in conjunction with the spline routines in pack. £.

The program is run as follows: choose appropriate dimensions in the parameter
statements in the file com; remove all . o files if com is modified; then type make followed
by a.out torunthe program. The output files fort.3, fort.20, fort.30, fort.31,
fort.32, fort.50, fort.51, fort. 99 are useful for plotting or checking the results.

Please refer to the various subroutines for a description of these outputs.

An appropriate selection of input quantities and inviscid data of good resolution are

required for successful completion of the interface run. Run times on the Cray are only a
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few CPU seconds so that runs can usually be made interactively. Some error messages

and suggested fixes are given below.

error from s/r SDIST; ipass=...
no solution for ak found in the range ... to ...7,
change ak or dak values in s/r ATTACH or

change input values of ncp,xcp ...’

The possible problem here is the use of inappropriate boundary-layer grid stretching;
try a different combination of ncp, xcp. The inviscid grid may also be too coarse near

the leading edge.

Convergence to uerlim not achieved

This problem is due to the lack of convergence in the attachment-line relocation
loop; choose a lower value of omatt or increase itat,uerlim values. |If various
combinations do not work, inviscid data is too coarse or the solution near the attachment

line is not smooth enough or the inviscid attachment line is too curved.

no convergence; s/r surf
1,] =...
ii,use(ii,j),vse(ii,j) hse(ii,j),pb(ii,J)

This problem is due to lack of convergence in the BL-EDGE equations, which is
invariably caused by a small nonnegative d P/ at the attachment line. The nonnegative
OP/dz is caused by an amplification in the oscillations in pressure near the attachment
line from the spline interpolation caused by a coarse inviscid grid. One possible fix is to
drop back to linear interpolation for P for a few points near the attachment line. Some
comment statements can be found in attach. £, which can be “uncommented” to drop

back to linear interpolation.
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Boundary-Layer Program Inputs

The inputs to the boundary-layer program are composed of two files:

(a) The boundary-layer edge data file bl .bin. This binary file is created by running

the interface program and is assumed to be available in the current directory (bl /casel,

for example). The format for this file has been described previously. This file is read

in the subroutine rinvis.

(b) The boundary-layer input options file inp.dat. This file is read in the subroutine

inputs and is assumed to be in the following format (note that each input line is

preceded by a line that contains a description of the input variables, which is read as

a character variable and ignored):

bl3d/bl/casel/inp.dat

CASE 1

BL INPUTS

PFS TFS PRL IWALL REFLEN IUNIT
2000 520 0.72 0 1.0 0

AK NXLIM NYLIM

1.05 68 29

EPSF EPSG EPSH IORD

.e-6 l.e-6 l.e-06 5

The description of the input variables is given below:

amach
pfs
tfs
prl

iwall

reflen

free-stream Mach number

free-stream static pressure (lb/ft2)
free-stream static temperature (deg R)
laminar Prandtl number

wall boundary condition
=0 adiabatic wall
=1 wall temperature,
(read in ‘main.f’)
=2 wall heat flux specified ,1lb/(ft.sec)
(read in main.f)
note: suction rates are also specified in 'main.f’

deg R specified

reference length in ft.
(similar to input in interface program, but in ft.)



iunit US or SI units, =0 for US units
ST units not currently implemented

zmax maximum value of transformed variable ’‘zeta’
corresponding to boundary-layer edge

ak stretching coefficient by which points are
distributed away from the wall

nxlim number of stations to march in x direction

nylim number of span-wise stations in y direction

itmax maximum number of iterations at each (i, j) point

epst convergence criterion for f-prime at wall

epsh convergence criterion for h-prime at wall

iord value of i for which scheme becomes fully second-

order in the stream-wise direction

Boundary-Layer Program Outputs

The output from the boundary-tfayer program is output to several fort. files. The
convergence information can be found in fort.2. Most of the results are output from
subroutine phys and can be modified as required. The output quantities include
Z*, u, v, T profiles; boundary-layer thickness, displacement thickness, and skin-friction
coefficient; streamwise and crossflow profiles; and crossflow Reynolds number. Please
refer to subroutine phys for more details. Note that these “writes” are for each (i,

j) location (with j as the inner loop).

Output Format for Stability Analysis

The output of profiles and their derivatives to first and second order, as well as

edge-normalizing quantities, are made in the format described below.

open(unit=7, file='"fort.7’, form="unformatted’,h status='unknown’)
write(7)title

Title in character*80.



write(7)nxlim,nylim, reflen

nxlim is number of chordwise stations.
nylim is number of spanwise stations.

reflen is reference length, dimensional.

write(7)pfs, tfs,ufs, amach, rofs

Quantities P%, T35, U, My, pk-

For each profile i=1,nxlim; Jj=1,nylim:

write(7)i,j,nz,x(1i,3),y(i,3),xbs,ybs, zbs
write(7)hl(1i,3),h2(1,3),gl2(i,3]),sls

write({7)ues,ves, tes, roes,pes,res,ales,prl,deltax, thetax, rcr
i is streamwise index.
j is spanwise index.
nz is no. of points in profile (constant).
x(1i,3) is boundary-layer coordinate x.
y(i,3j) is boundary-layer coordinate y.
xbs, ybs, zbs are Cartesian coordinates x'*, y'*, 7".
hil(i,3J),h2(i,3),gl2(i,j) are metrics hy, hy, g12-
sls is 51, dimensional arc-length in the x direction.
ues,ves, tes, roes, pes are edge quantities u.*, v.", T.", p.", P.".
For i=1, du’/ds? is output instead of ..
res is local Reynolds number based on s;~, u.”, v.".

ales is reference length by which normal distance is scaled.

=/ = dug -
ales =1 = L@/ﬁ%fOfl-L

B-11



ales =1["=./visi/ut for i>1.
prl is laminar Prandtl number.
deltax is boundary-layer thickness (99 percent) based on u, dimensional.
thetax is momentum thickness based on «, dimensional.

rcr is radius of curvature, dimensional.

Profile outputs:

write(7) (zp(k),k=1,nz)

zp is z, = (z'/°); note I” definition for i=1 and i>1.

This box only for i>1:

write(7) (up(k),k=1,nz)
write(7) (upz(k) k=1 z)

write(7) (upzz(k),k=1,nz)

up is u*/u."; upz is Oup/dzp; upzz is Bzup/azf,

vp is v if i=1, v,  if i>1;

vpz,vpzz are derivatives defined similar to upz, upzz.

write(7) (tp{(k),hk=1,nz)
write(7) (tpz (k) ,k=1,nz)

write(7) (tpzz(k),bk=1,nz)

tp is T'/T."; tpz, tpzz are defined similar to upz, upzz.
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write(7) (wp(k
(

k=1,nz)
write(7) (wpz =

)
k), k=1,nz)

write(7) (wpzz(k),k=1,nz)

wp is w*/v} if i=1, &*/u} for i>1; wpz, wpzz are defined similar to upz, upzz.

This box only for i>2; output of streamwise derivatives:

(7) (duds (k) ,k=1,nz)
write(7) (dvds (k) ,k=1,nz)
write(7) (dtds (k) ,hk=1,nz)
write(7) (dwds (k) ,k=1,nz)

duds=(du*/9s%) /(UL /1)
dvds=(9v*/9s}) /(UL 1*)

dtds

(
(
(01 /8s7) /(U /17)
dwds=(0w*/9s1)/(Us /1)

These output writes are implemented in subroutine out in the subdirectory,

bl3d/bl/casel (and also bl3d/bl/case2).

Running the Boundary-Layer Program

The program routines are contained in the following files:

blk. £
der.f
etac.f
main. £
phys.t
rinvis.f
sumk. £
cl3phi.f
derk. £t
initial.f
nextep. £
read?.f
solve.f
updte. £



conv. £
edge. £
inputs.f
out.f
ref.f
sum. £

In addition, the include files com and compack, the makefile makefile, and the

input file inp . dat are also provided. A brief description of important subroutines follows:
inputs. f. Reads input file inp.dat.
ref.f. Calculates reference quantities.
rinvis.f. Reads boundary-layer edge data bl .bin.
initial.f. Sets up initial profile at the attachment pointi =1, j = 1.

main. £. Calls various routines; specification of wall temperature or wall heat flux;

specifies wall suction rate.

edge. £. Specifies edge coefficients depending on boundary point or interior point;

calls c13phi. f, etac. f to calculate some additional edge parameters.

etac. f. Sets up the y differencing coefficients based on the local crossflow direction

(L scheme or Z scheme).
blk. f. Sets up and solves the (7x7xnz) block tridiagonal system.

updte. £. Updates nonlinear quantities 9, ¢, I, ', Ds, and [ at k = 1 for the current

iteration.
updte. £. Checks convergence.

phys.f. Outputs dimensional quantities, boundary-layer properties; calculates

crossflow.
nexstep. f: storing of variables prior to stepping in i.
out . f: output of quantities and profiles for boundary-layer stability analysis.

The include file com has the following parameter statement (for casel in this

example):



parameter (nx=100,ny=29,nz=61)

The nx and ny values are as written out from the interface program. The value of
nz corresponds to the number of points in the boundary-layer normal direction.

The program is run with input files inp.dat and bl .bin. Appropriate dimensions
in parameter statement in the file com are selected; then remove all .o files if com
was modified. Type make, followed by a.out to run the program. Runs can be made
interactively for moderate grids. The program execution stops at the (i, j) location where
the boundary layer separates; this results from the calculation of negative temperature
in subroutine update. An error message is printed out, and the incipient separation

condition can be checked by the local skin-friction coefficient.



Table 1

List of Important Program Variables

Computer variable Symbol Description
a,b,c of Bk 4k~ elements of linearized system (eq. (120))
al,a2,a3,a4d Ay, Ag, Az, Ay coefficients of transformed continuity

equations (egs. (47)—(50))

adl, ad2, ad3 ai, ay,as ¢ direction coefficients (eq. (129))

ak , ks stretching constant for { distribution (eq.
(128))

al ! ratio (pu)/(pette)

alp ! oljo¢

alpr I/Pr

alprp I'/Pr

amach M Mach number

amue e edge viscosity, nondimensional, (eq. (33))

amuel e at (ij) local value of p,

amufs [Tp free-stream viscosity, dimensional

amur 7 reference viscosity function,

nondimensional (eq. (33))

bl,b2,b3,bd,b5,b6 Bj, By, B3, By, coefficients (eqs. (55)—(60))
B57B6

b3h, bdh B, By coefficients (eq. (94))



Computer variable Symbol Description

b3t,b4t,bSt, b6t By By, Bs,Bg  coefficients (eq. (91))

bdl,bd2,bd3,bdd, by, bs, b3, by, bs n direction differencing coefficients (eq.

bd5 (132))
bet v/(v=1)
bet2 (v—1)/2

cl,c2,c3,c4,c5,c6 (1,0, Cy,C4, coefficients (eqs. (62)—(67))
Cs,Cs

c4h, c5h Cy,Cs coefficients (eq. (95))

c3t,cd4t,c5t,c6t Cs,C4,Cs, Cq coefficients (eq. (92))

cl3 Ci3 metric coefficient (eq. (6))

c132 C13?

c13phix (Crsp/h1) , metric coefficient (eq. (48))
c1l3phiy {C13¢v, /(hzue)},y metric coefficient (eq. (50))
c24,c25,c26 Cas, Cas, Cog coefficients (eq. (19))

c26x 0C46/0x coefficient (eq. (80))
¢34,c35,c36 C34,Cs5, C36 coefficients (eq. (20))

cbetal cos (B); ; angle between grid lines (eq. (3))
cdl, cd2 i constants (eq. (101))
chil,chi2,chi3 X1, X25 X3 coefficients (eq. (87))



Computer variable

dl,d2,d3,d4,d5

d5p
d3t,d4t

delfp,delgp,
delhp

del fpmax,
delgpmax,
delhpmax,

deltax

duds
el,e2,e3,ed

epsf, epsg, epsh

f£1, f2
fe
fel
fey
fp

fpl, fp2

Symbol

DI,DQ,D3,D4,

Ds
0D5/0¢
153:D~4

055,086,057

max. of
0S5, 05¢, 057

(Oue/0x);_,

El) E27E3a E4

(5ue/a$%=1

(0%uc [0z By)

FI

=1

Description

coefficients (eqs. (68)—(69))

coefficients (eq. (96))

solution vector elements (eq. (108))

convergence indicators

boundary-layer thickness based on F
reaching 99 percent value, dimensional

attachment-line velocity gradient
coefficients (eq. (87))

convergence criterion for change in
flg,n atwall (k=1)

ufue

Fati—landi-2
attachment-line velocity gradient
local value of fe

used in eq. (76)

O(ufue)/9¢

Fati—landi-2



Computer variable Symbol Description

g G v/v,

£f1,£2 Fati—landi-2

gl, g2 Gati—landi-2
gl2,gl2l g12 metric coefficient

gl2x dg12/0z

gl2y 0912/0y

gam v

gel local value of Gy,

gex, gey x,y gradients of Gy_g.

ap G (v /v,)[0C

gpl, gp2 Gati—1landi-2

h H nondimensional total enthalpy (eq. (24))
hl hy metric coefficient

hil h; local value of metric coefficient
hlx,hly hiz, iy x,y gradients of i,

h2 hy metric coefficient

h21 hy local value of metric coefficient
h2x,h2y hozyhoy x,y gradients of h;

he Hiote boundary-layer edge value of H
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Computer variable Symbol

hel

hfs H*

hhl, hh2
hp H
hpl, hp2

hse

iat
idim
ile

iord

iout

istart

isurf

it superscript n

itat

itel, ite2

Description

local value of H

tree-stream value of total enthalpy (egq.
(23))

Hati—1landi-2

0H/d¢

Hati—landi—-2

H, from BL-EDGE equations
streamwise index
attachment-iine iteration count
Euler grid maximum dimension
i index of leading edge

value of i at which scheme is fully second
order in x

flag to output edge values by interpolation
or from BL—-EDGE solution

flag for interface run mode
flag for upper or lower surface
boundary-layer iteration count

maximum number of attachment-line
iterations

wing trailing edge indices
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Computer variable Symbol Description

itmax maximum number of boundary-layer
iterations

iunit flag for U.S. units or S.1. units

iv number of points in streamwise direction,

from interface run

ivm maximum dimension for iv

iwall flag for wall boundary condition

J spanwise index

j1,32,33,34.35 neighboring points of (i, 3) usediny
differencing

Jlw, j2w spanwise indices that correspond to

interface output

jdim Euler grid maximum dimension
jtel, jte2 wing symmetry plane and tip indices
jv number of points in spanwise direction

from interface run

jvm maximum dimension for jv
kdim Euler grid maximum dimension
1flagx flag to signify attachment-point solution or

three-dimensional solution

1flagy flag to signify LISW or general
three-dimensional case
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Computer variable Symbol

ncp

nx

nxlim
nxm

nxw

ny
nylim
nym
nz
nzl

omatt

omega

pb Cp
pc G,
pfs P

phil ¢

Description

number of points in boundary-layer grid
between attachment point and point at
which local chord fraction = xcp

streamwise dimension of boundary-layer
grid

value of i<nx limiting march in x
maximum dimension for nx

number of streamwise stations written out
from interface code

spanwise dimension of boundary-layer grid
value of j (<ny) limiting sweep in y
maximum dimension for ny

number of points in normal direction

nz-1

relaxation factor w, for attachment-line
iteration

blending factor between LISW and
three-dimensional solutions

pressure coefficient on boundary-layer grid
pressure coefficient on Euler grid
free-stream static pressure, dimensional

local value of ¢
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Computer variable

pi

prl

gel
reflen

refls

refs

roe

roel
rofs
rstar
s1l

tb

tc

te, tel

tfs

Symbol

Pr

Re,

Reo /LY,

Pe

Description

laminar Prandtl number

absolute velocity, nondimensional
local value of absolute edge velocity
reference length

free-stream Reynolds number based on
L%, (eq. (29)

free-stream Reynolds number per unit
length

boundary-layer edge density,
nondimensional

local value of boundary-layer edge density
free-stream density, dimensional

gas constant

nondimensional arc length

nondimensional boundary-layer edge
temperature

nondimensional temperature from Euler
solution

nondimensional boundary-layer edge
temperature

free-stream dimensional temperature
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Computer variable

thel, the2

thetax

til, ti2

tr

trs

tse

tst

tw

ub

uc

ue
uel

uerlim

uex

uey

Symbol

6,0

Ue

Ue

Jue [0z

Jue/dy

Description

temperature ratio and gradient (egs. (54)
and (89))

momentum thickness based on F,
dimensional

temperature profiles ati — 1 andi — 2
reference temperature (eq. (33))
reference temperature, dimensional (eq.
(32))

edge temperature from the solution of the
BL—EDGE equations

streamwise derivative of T

wall temperature, nondimensional (eq.
(119))

Cartesian velocity component,
nondimensional

Cartesian velocity component from Euler
solution, nondimensional

streamwise edge velocity
local value of streamwise edge velocity

error tolerance on streamwise velocity u,
at attachment line

streamwise velocity gradient

spanwise velocity gradient
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Computer variable Symbol

ufs Us,
uil,ui2

url

use

ustr

vb

vcC

vCross

ve v,

vel Ve
vil,vi2

vrl v,

VEX,Vry

vse

Description

freestream velocity, dimensional
velocity profiles ati — 1 and i — 2

= 0 on attachment line, = 1, away from
attachment line; used to compute g

edge velocity from the solution of the
BL-EDGE equations

velocity profile in the edge streamline
direction

Cartesian velocity component,
nondimensional

Cartesian velocity component from Euler
solution, nondimensional

crossflow velocity (orthogonal to edge
streamline)

edge velocity in span direction,
nondimensional

local value of v,
velocity profiles ati — 1 and i — 2

reference velocity used in the definition of
G (eq. (43))

derivatives in x,y of v,

edge velocity from the solution of the
BL-EDGE equations

transformed normal velocity (eq. (44))
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Computer variable Symbol

wb

wC

wil,wi2

xb, yb, zb x

Xc,yc, zC
XCcp

Xnorm

zcon
zil,z12

zphys Z

zphysx

zphysy

Description

Cartesian velocity component,
nondimensional

Cartesian velocity component from Euler
solution, nondimensional

velocity profiles ati — 1 andi — 2
streamwise boundary-layer coordinates

Cartesian coordinate of boundary-layer
grid

Cartesian coordinate of Euler grid
percent chord value at which i=ncp
normalizing arc length, nondimensional

transformed boundary-layer normal
coordinate

coefficient to calculate zphys from z
zphys ati— landi —2

boundary-layer grid normal coordinate,
dimensional

streamwise gradient of z*

spanwise gradient of z*
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